Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS

نویسندگان

  • Leslie M Schoop
  • Mazhar N Ali
  • Carola Straßer
  • Andreas Topp
  • Andrei Varykhalov
  • Dmitry Marchenko
  • Viola Duppel
  • Stuart S P Parkin
  • Bettina V Lotsch
  • Christian R Ast
چکیده

Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional topological photonic crystal with a single surface Dirac cone

A single Dirac cone on the surface is the hallmark of three-dimensional (3D) topological insulators, where the double degeneracy at the Dirac point is protected by time-reversal symmetry and the spin-splitting away from the point is provided by the spin-orbital coupling. Here we predict a single Dirac-cone surface state in a 3D photonic crystal, where the degeneracy at the Dirac point is protec...

متن کامل

Dirac and Weyl superconductors in three dimensions.

We introduce the concept of three-dimensional Dirac (Weyl) superconductors (SC), which have protected bulk fourfold (twofold) nodal points and surface Majorana arcs at zero energy. We provide a sufficient criterion for realizing them in centrosymmetric SCs with odd-parity pairing and mirror symmetry. Pairs of Dirac nodes appear in a mirror-invariant plane when the mirror winding number is nontr...

متن کامل

Symmetry-protected topological photonic crystal in three dimensions

Topology of electron wavefunctions was first introduced to characterize the quantum Hall states in two dimensions discovered in 1980 (ref. 1). Over the past decade, it has been recognized that symmetry plays a crucial role in the classification of topological phases, leading to the broad notion of symmetry-protected topological phases2. As a primary example, topological insulators3,4 are distin...

متن کامل

The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space,...

متن کامل

Dirac nodes and quantized thermal Hall effect in the mixed state of d-wave superconductors

We consider the vortex state of d-wave superconductors in the clean limit. Within the linearized approximation the quasiparticle bands obtained are found to posess Dirac cone dispersions ~band touchings! at special points in the Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian that we call TDirac . Moreover, for vortex lattices that possess inversion symmetry, it i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016